189 research outputs found

    Photon pair production at flavour factories with per mille accuracy

    Full text link
    We present a high-precision QED calculation, with 0.1% theoretical accuracy, of two photon production in e+ee^+ e^- annihilation, as required by more and more accurate luminosity monitoring at flavour factories. The accuracy of the approach, which is based on the matching of exact next-to-leading order corrections with a QED Parton Shower algorithm, is demonstrated through a detailed analysis of the impact of the various sources of radiative corrections to the experimentally relevant observables. The calculation is implemented in the latest version of the event generator BabaYaga, available for precision simulations of photon pair production at e+ee^+ e^- colliders of moderately high energies.Comment: 11 pages, 5 figures, 1 tabl

    Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders

    Get PDF
    We present a detailed study of the production of a high transverse-momentum lepton pair at hadron colliders, which includes the exact O(alpha) electroweak corrections properly matched with leading logarithmic effects due to multiple photon emission, as required by the experiments at the Fermilab Tevatron and the CERN LHC. Numerical results for the relevant observables of single Z-boson production at hadron colliders are presented. The impact of the radiative corrections is discussed in detail. The presence in the proton of a photon density is considered and the effects of the photon-induced partonic subprocesses are analyzed. The calculation has been implemented in the new version of the event generator HORACE, which is available for precision simulations of the neutral and charged current Drell-Yan processes.Comment: October 2007, 22p

    Multi-photon corrections to W boson mass determination at hadron colliders

    Full text link
    The impact of higher-order final-state photonic corrections on the precise determination of the W-boson mass at the Tevatron and LHC colliders is evaluated. The W-mass shift from a fit to the transverse mass distribution is found to be about 10 MeV in the W --> mu nu channel and a few MeV in the W --> e nu channel. The calculation, which is implemented in the Monte Carlo event generator HORACE for data analysis, can contribute to reduce the uncertainty associated to the W mass measurement at present and future hadron collider experiments.Comment: 3 pages, 2 figures, to appear in the proceedings of International Europhysics Conference on High-Energy Physics (EPS 2003), Aachen, Germany, 17-23 Jul 200

    A new approach to evaluate the leading hadronic corrections to the muon g-2

    Get PDF
    We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. We argue that this new method may become feasible at flavor factories, resulting in an alternative determination potentially competitive with the accuracy of the present results obtained with the dispersive approach via time-like data.Comment: 7 pages, 3 figures. Version accepted for publication in Phys. Lett.

    Full one-loop electroweak corrections to e+e- to 3 jets at linear colliders

    Get PDF
    We describe the impact of the full one-loop electroweak terms of O(alpha_s alpha_EM^3) entering the electron-positron into three-jet cross-section from sqrt(s)=M_Z to TeV scale energies. We include both factorisable and non-factorisable virtual corrections and photon bremsstrahlung. Their importance for the measurement of alpha_S from jet rates and shape variables is explained qualitatively and illustrated quantitatively, also in presence of b-tagging.Comment: 6 pages, to appear in the proceedings of the workshop "LC09 -- e+e- Physics at the TeV scale and the Dark Matter Connection", 21-24 September 2009, Perugia (Italy). Minor corrections, references added
    corecore